

Computational thinking, problem-solving and programming: Introduction to Programming

IB Computer Science

Content developed by **Dartford Grammar School** Computer Science Department

HL Topics 1-7, D1-4

1: System design

2: Computer Organisation

3: Networks

4: Computational thinking

5: Abstract data structures

6: Resource management

7: Control

D: OOP

HL & SL 4.3 Overview

Nature of programming languages

- 4.3.1 State the fundamental operations of a computer
- 4.3.2 Distinguish between fundamental and compound operations of a computer
- 4.3.3 Explain the essential features of a computer language
- 4.3.4 Explain the need for higher level languages
- 4.3.5 Outline the need for a translation process from a higher level language to machine executable code

Use of programming languages

- 4.3.6 Define the terms: variable, constant, operator, object
- 4.3.7 Define the operators =, ., <, <=, >, >=, mod, div
- 4.3.8 Analyse the use of variables, constants and operators in algorithms
- 4.3.9 Construct algorithms using loops, branching
- 4.3.10 Describe the characteristics and applications of a collection
- 4.3.11 Construct algorithms using the access methods of a collection

4.3.12 Discuss the need for sub-programmes and collections within programmed solutions

4.3.13 Construct algorithms using predefined sub-programmes, one-dimensional arrays and/or collections

2: Computer Organisation

3: Networks

4: Computational thinking

5: Abstract data structures

6: Resource management

Topic 4.3.1

State the **fundamental operations** of a computer

Fundamental operations

All CPUs have sets of instructions, also called the fundamental operations, that enable commands to be processed.

The four most fundamental operations are:

- **√ADD**
- **✓ COMPARE**

✓ **RETRIEVE** (sometimes called **LOAD**)

✓ STORE (sometimes called SAVE)

Fundamental vs Complex

An example of fundamental instructions:

Examples of complex instructions:

LOAD register 34AB39 ADD 29 STORE result COMPARE result to register 4

Find the biggest number in an array

Sort the names alphabetically

Example of Machine Code (using Fundamentals)

TKP 16514 PUSH_HL 229	16544 LD BC NN (169) COLL NN	1 29 % 205 ⊴0 <i>≤4</i>	CP N	254 148
(130) PUSH BC 197	(64) DEC HL	43	CALL STR	48 26
(64) CALL NN 205 187 2	LDCN	14 38	CP N	203 107 04
LDBH 68	CALL NN	205 130 64	JP NC DIS	48 19
LDCL 77	INC HL	35	PUSH AF	245
	16557 LD A (HL)	126	CALL ALIST	205 141 66
INC D 20	SUB N	214 28	POP AF	241
JE 2 DID 40 247 FOLL NN - 205 100 7			CP N	254 0
UD A (HL)126	LUUN VODA	14 11	JP Z DIS	40 10
POP BC 193	ADD C	129	PUP BU DOD UI	193
PUSH BC 197	DJNZ DIS	16 253	INAC	121
CP C 185	ADD N	198 97	CP N	254 1
JP Z DIS 40 6	DEC HL	43	JP Z DIS	40 5
	SUB (HL)	150	POP AF	241
DOD DC 192	MOVE		JR DIS	24 218
TO DC 153 TO BIS 24 231		123	POP BC	193
POP BC 193	НШИ Н (НС	245	PUP HL	225
POP HL 225	PUSH HI	273	FUF NF TNC HI	241 25
LD(HL) A 119	PUSH BC	197	DINZ DIS	16 211
RET 201	CP N	254 63	RET	201
KYBD	JP C DIS	56 30	40 MONT	