Computational thinking,
problem-solving and programming:

Connecting computational thinking and program design

IB Computer Science

QO Content developed by
' \O Dartford Grammar School {R'§)
\}O Computer Science Department

FOUNDED 1576

HL Topics 1-7, D1-4

5: Abstract data
structures

2: Computer
Organisation

6: Resource
management

3: Networks

7: Control

s

4: Computational
thinking

HL & SL 4.2 Overview

4.2.1 Describe the characteristics of standard algorithms on linear arrays
4.2.2 Outline the standard operations of collections

4.2.3 Discuss an algorithm to solve a specific problem

4.2.4 Analyse an algorithm presented as a flow chart

4.2.5 Analyse an algorithm presented as pseudocode

4.2.6 Construct pseudocode to represent an algorithm

4.2.7 Suggest suitable algorithms to solve a specific problem

4.2.8 Deduce the efficiency of an algorithm in the context of its use

4.2.9 Determine the number of times a step in an algorithm will be performed for given
input data

2: Computer
Organisation

3: Networks

4: Computational ¢
thinking =

5: Abstract data
structures

6: Resource
management

7: Control

Topic 4.2.1

Describe the characteristics of
standard algorithms on linear arrays

7,
The four key standard algorithms:

Sequential search
Binary search
Bubble sort

Selection sort

Element

First index (at index 8)
I
o 1 2 3 4 5 6 7 \E 9 — Indices

= L
- Coai

Array length is 10

7,
Sequential search

Linear search or sequential search is an algorithm to find an
item in a list.

It starts at the first element and compares each element to
the one it’s looking for until it finds it.

Commonly used with collections (which are unsorted lists of
items) and text/csv file reading.

start herego through these, to the end stop

N lllllllillll
g EL

o 1 2 3 4 5 6 7 B 910 11

toFind |22

7,

Sequential search (video)

linearSearch(key, array[]):
for (i = 0; i < length(array); i++):
if (array[i] == key):

return i

return -1

M @ 241/331

https://www.youtube.com/watch?v=CX2CYIJLwfg

https://www.youtube.com/watch?v=CX2CYIJLwfg

Sequential search (Pseudocode)

NAMES = “Bob”,”Betty”,”Kim”,”Lucy”, ”"Dave”
output "These names start with D"

loop while NAMES.hasNext ()
NAME = NAMES.getNext ()
if firstLetter (NAME) = "D" then

Computer Science
First Exams 2014

ou tpu t NAME Pseusdoco:enin Esxaminations
end if R
end loop

Binary search

Binary search, also known as half-interval search, is a search
algorithm that finds the position of a target value within a
sorted array.

It works by comparing the target value to the middle
element of the array;

If they are unequal, the lower or upper half of the array is
eliminated depending on the result and the search is
repeated in the remaining sub-array until it is successful.

It only applies to SORTED arrays (where there are usually no
duplicate values, or duplicates do not matter)

Binary search (video)

Aladdin Daisy Duck King Louie Rapunzel
Alice Donald Duck Maid Marian ~ Robin Hood
Ariel Dumbo Merlin Roger Rabbit
Bambi Gaston Mickey Mouse Scar

Belle Goofy Minnie Mouse Scrooge

Bolt Hugo Mufasa Simba
Chicken Little lago Pinocchio Snow White
Cinderella Jafar Pluto Stitch

Pocahontas Tarzan

Cruella de Vil Jasmine

0:43 / 11:57

o

https://www.youtube.com/watch?v=D5SrAgalpno

https://www.youtube.com/watch?v=D5SrAga1pno

Binary search

num = 4 1. start by checking the midpoint

. search le
3==47no. “search riaht 7==47no.
3>47no /3 L{{' 7>47yes

4==47)

1 3 4 7 9 11 13

Binary search

BINARY SEARCH
oo Array
Best Average Worst
Ll Divide and Conquer
o O (log n) 0 (log n) HEER
search (A, t) search (A 11)
1 low=0 low ix hfgh
2. high=n-1 #*F’,,rﬁrstpass[114789111517}
3. while (low <high)do <:_ low i high
4. ix=(low+high2 "\ "“secondpass[1 [4 [8 [0]11[15]17]
5. if (t = Alix]) then " low
6 return true ix
. : R high
7 Ise if (t < Alix]) th :
else f (t < Alix]) then third pass[1 1 4 [8 [111115117
8 high = ix—1
9 elselow = ix + 1 explored
10. return false elements
end

Binary search (Pseudocode)

ID = [1001,1002,1050,1100,1120,1180,1200,1400]
NAME = ["Apple", "Cherry", "Peach", "Banana","Fig", "Grape", "Olive", "Mango"]

output "Type the ID number that you wish to find"
input TARGET

IOW = 0

HIGH = 7

FOUND = -1

loop while FOUND = -1 AND LOW <= HIGH

MID = LOW + HIGH div 2
if ID[MID] = TARGET then
FOUND = MID

else if TARGET < ID[MID] then Y\ Dinloms
[/ Programme

HIGH = MID - 1 ;

else
LOW = MID + 1 Compuner Sconc

end if Pseudocode in Examinations
- * Standard Data Structures

end Whl le * Examples of Pseudocode

Canciste 3 HOT sfove 300 35 cocmet sy ek earanssrs.

if FOUND >= 0 then

output TARGET , ":" , NAME[FOUND]
else

output TARGET , " was not found"
end if

Bubble sort

Bubble sort is a simple sorting algorithm that repeatedly
steps through the list to be sorted, compares each pair of
adjacent items and swaps them if they are in the wrong
order.

The pass through the list is repeated until no swaps are
needed, which indicates that the list is sorted.

The algorithm, which is a comparison sort, is named for the
way smaller elements "bubble" to the top of the list.

Although the algorithm is simple, it is too slow and
impractical for most problems

Bubble sort (video)

hr et b in list ™)

oW
Cl_:f‘L(’fl')* 'HALV:

; T o—(o dars

M o 205/544

https://www.youtube.com/watch?v=8Kp-80GwphY

https://www.youtube.com/watch?v=8Kp-8OGwphY

Bubble sort

0 1 2 & 4 & 6 ¥ 8
23|17 5|90 |12 44| 38|84 | 77 17| 5 | 23|12 44|90 | 38|84 | 77

1‘_1‘ exchange exchange u

‘17 23 5‘90\12‘44‘38‘84 77' 17|85 23|12 (44| 38|90 |84 | 77

u exchange exchange 1_1‘

‘17‘5 23‘90|12‘44‘38‘84 77' 17‘5‘23’12‘44‘38‘84‘90‘77'

TBk_Tu R exchange | l

‘17‘5 23‘12|9°‘44‘38‘84 77' 17|5 | 23|12 |44|38|84]| 77|90
u exchange The largest value 90 is at the end of
the list.

Bubble sort (Pseudocode)

NUMS = [15,30,85,25,40,90,50,65,20,60]

output "Before sorting"

loop C from 0 to 9
output NUMS[C]

end loop

loop PASS from 0O to 8
loop CURRENT from 0O to 8
if NUMS[CURRENT] < NUMS[CURRENT + 1] then
TEMP = NUMS [CURRENT]
NUMS [CURRENT] = NUMS|[CURRENT+1]
NUMS [CURRENT+1] = TEMP
end if

end loop

end loop

Computer Science
First Exams 2014

Pseudocode in Examinations
+ Standard Data Structures
» Examples of Pseudocode

Concte O soweta oy f s cocmer: g e exanasons.

Selection sort

Selection sort is a sorting algorithm and it is inefficient on large lists

Selection sort is noted for its simplicity, and it has performance
advantages over more complicated algorithms in certain situations,
particularly where memory is limited.

The algorithm divides the input list into two parts: the sublist of items
already sorted, which is built up from left to right at the front (left) of the
list, and the sublist of items remaining to be sorted that occupy the rest
of the list.

Initially, the sorted sublist is empty and the unsorted sublist is the entire
input list.

The algorithm proceeds by finding the smallest (or largest, depending on
sorting order) element in the unsorted sublist, exchanging (swapping) it
with the leftmost unsorted element (putting it in sorted order), and
moving the sublist boundaries one element to the right.

7,

Selection sort (video)

Current
Minimum

Bl 3057906

https://www.youtube.com/watch?v=f8hXR Hvybo

https://www.youtube.com/watch?v=f8hXR_Hvybo

42 16 | B4 | 12 | 77 | 26 | 53
N
12 16 | 64 | 42 | 77 | 26 | 53
. v,
12 | 16 | 84 | 42 | /7 | 26 | 53
'4 !
12 | 16 | 26 | 42 | /7 | 84 | 53
. v,
12 | 16 | 26 | 42 | /7 | 84 | 53
12 | 16 | 26 | 42 | 53 | 84 | 77
[,
£ N\
12 | 16 | 26 | 42 | 63 | 77 | 84
L,

The array, before the selection sort
operation begins.

The smallest number (12) is swapped
into the first element in the structure.

In the data that remains, 16 is the
smallest: and it does not need to
be moved.

26 is the next smallest number, and
it is swapped into the third position.

42 is the next smallest number: it is
already in the correct position.

53 is the smallest number in the data
that remains; and it is swapped to
the appropnate position.

Of the two remaining data items, 77 is
the smaller; the items are swapped.
The selecfion sort is now complete.

Selection sort (Pseudocode)

A - an array containing the list of numbers
numItems - the number of numbers in the list

for i = 0 to numItems - 1
for j = i+l to numItems
if A[i] > A[]]
// Swap the entries

Temp = A[i]

A[i] = A[37]

A[j] = Temp oo s
end if B

end loop

end loop

