

#### **Computational thinking, problem-solving and programming:** Connecting computational thinking and program design

**IB Computer Science** 



Content developed by **Dartford Grammar School** Computer Science Department





## HL Topics 1-7, D1-4





1: System design



2: Computer Organisation



3: Networks



4: Computational thinking



5: Abstract data structures



6: Resource management



7: Control



D: OOP



### HL & SL 4.2 Overview

- 4.2.1 Describe the characteristics of standard algorithms on linear arrays
- 4.2.2 Outline the standard operations of collections
- 4.2.3 Discuss an algorithm to solve a specific problem
- 4.2.4 Analyse an algorithm presented as a flow chart
- 4.2.5 Analyse an algorithm presented as pseudocode
- 4.2.6 Construct pseudocode to represent an algorithm
- 4.2.7 Suggest suitable algorithms to solve a specific problem
- 4.2.8 Deduce the efficiency of an algorithm in the context of its use

4.2.9 Determine the number of times a step in an algorithm will be performed for given input data



1: System design

2: Computer Organisation





3: Networks

4: Computational thinking





5: Abstract data structures

6: Resource management











### **Topic 4.2.2**

# Outline the **standard operations** of **collections**





### **Collections?**

- As far as the IB is concerned, collections are UNORDERED lists usually of UNKNOWN length or size.
- In practice we usually program collections using LinkedLists in Java.
- This means that we must remember there are a few things that LinkedLists CAN do that collections CANNOT.



### **Standard collection operations**

- .addItem( data ) = add data item to the collection
- .resetNext() = start at the beginning
- .hasNext()  $\rightarrow$  tells whether there is another item in the list
- .getNext()  $\rightarrow$  retrieves a data item from the collection
- .isEmpty()  $\rightarrow$  check whether collection is empty

Be careful not to use methods not on this list, like .size() or .length()

ONLY these methods are allowed





#### **IB: Collection methods**

#### Collections

Collections store a set of elements. The elements may be of any type (numbers, objects, arrays, Strings, etc.).

A collection provides a mechanism to iterate through all of the elements that it contains. The following code is guaranteed to retrieve each item in the collection exactly once.

```
// STUFF is a collection that already exists
STUFF.resetNext()
loop while STUFF.hasNext()
ITEM = STUFF.getNext()
// process ITEM in whatever way is needed
end loop
```

| Method<br>name | Brief description                         | Example:<br>HOT, a collection of<br>temperatures | Comment                                                                                                                                                                                          |
|----------------|-------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| addItem()      | Add Item                                  | HOT.addItem(42)<br>HOT.addItem("chile")          | Adds an element that<br>contains the argument,<br>whether it is a value,<br>String, object, etc.                                                                                                 |
| getNext()      | Get the next item                         | TEMP = HOT.getNext()                             | getNext () will return<br>the first item in the<br>collection when it is first<br>called.                                                                                                        |
|                |                                           |                                                  | Note: getNext() does<br>not remove the Item from<br>the collection.                                                                                                                              |
| resetNext()    | Go back to the start<br>of the collection | HOT.resetNext()<br>HOT.getNext()                 | Restarts the iteration<br>through the collection.<br>The two lines shown will<br>retrieve the first item in<br>the collection.                                                                   |
| hasNext()      | Test: has next item                       | 1f HOT.hasNext() then                            | Returns TRUE if there are<br>one or more elements in<br>the collection that have<br>not been accessed by the<br>present iteration: The<br>next use of getNext ()<br>will return a valid element. |
| 1sEmpty()      | Test: collection is<br>empty              | if HOT.isEmpty() then                            | Returns TRUE if the<br>collection does not<br>contain any elements.                                                                                                                              |

#### Computer Science First Exams 2014

#### Pseudocode in Examinations

- Standard Data Structures
- Examples of Pseudocode

  Inters are NOT allowed a copy of this document during their examinations.





### **Collections (Pseudocode)**

```
NAMES = new Collection()
NAME = ""
loop while NAME <> "quit"
   input NAME
   if NAME <> "quit" then
       if NAMES.contains(NAME) then
           output NAME , " returned"
           NAMES.remove(NAME)
       else
           output NAME , " is leaving"
           NAMES.addItem(NAME)
       end if
   end if
end loop
output "The following students left and did not return"
NAMES.resetNext()
loop while NAMES.hasNext()
```

```
output NAMES.getNext()
```

end loop

#### Task:

This program inputs NAMES of students who are leaving school early - for example to visit the doctor. The names are collected in a Collection list. When a student returns, tying the same name again removes that name from the list. At the end of the day, the secretary types "quit" to end the program and see a list of all students who left but did not return.

