
IB Computer Science

Content developed by
Dartford Grammar School

Computer Science Department

Computational thinking,
problem-solving and programming:

Connecting computational thinking and program design

Content developed by Dartford Grammar School Computer Science Department

1: System design 2: Computer
Organisation

3: Networks 4: Computational
thinking

5: Abstract data
structures

6: Resource
management

7: Control D: OOP

HL Topics 1-7, D1-4

Content developed by Dartford Grammar School Computer Science Department

1: System design

2: Computer
Organisation

3: Networks

4: Computational
thinking

5: Abstract data
structures

6: Resource
management

7: Control

D: OOP

HL & SL 4.2 Overview
4.2.1 Describe the characteristics of standard algorithms on linear arrays

4.2.2 Outline the standard operations of collections

4.2.3 Discuss an algorithm to solve a specific problem

4.2.4 Analyse an algorithm presented as a flow chart

4.2.5 Analyse an algorithm presented as pseudocode

4.2.6 Construct pseudocode to represent an algorithm

4.2.7 Suggest suitable algorithms to solve a specific problem

4.2.8 Deduce the efficiency of an algorithm in the context of its use

4.2.9 Determine the number of times a step in an algorithm will be performed for given
input data

Content developed by Dartford Grammar School Computer Science Department

Topic 4.2.8

Deduce the efficiency of an algorithm
in the context of its use

Content developed by Dartford Grammar School Computer Science Department

Teacher’s notes:

• Students should understand and explain the difference in
efficiency between a single loop, nested loops, a loop that
ends when a condition is met or questions of similar
complexity.

• Students should also be able to suggest changes in an
algorithm that would improve efficiency, for example, using
a flag to stop a search immediately when an item is found,
rather than continuing the search through the entire list.

Content developed by Dartford Grammar School Computer Science Department

What effects run time of an algorithm?

(a) computer used, the hardware platform

(b) representation of abstract data types (ADT's)

(c) efficiency of compiler

(d) competence of programmer (programming skills)

(e) complexity of underlying algorithm

(f) size of the input

Generally (e) and (f) are the most important

Content developed by Dartford Grammar School Computer Science Department

Definition: Complexity

• Complexity of an algorithm is a measure of
the amount of time and/or space required by
an algorithm for an input of a given size (n).

• Time for an algorithm to run t(n) is
characterised by the size of the input.

• We usually try and estimate the WORST
CASE, and sometimes the BEST CASE, and
very rarely the AVERAGE CASE.

Content developed by Dartford Grammar School Computer Science Department

What do we measure?

• In analysing an algorithm, rather than a piece of
code, we will try and predict the number of times
the principle activity of that algorithm is
performed.

• For example, if we are analysing a sorting algorithm
we might count the number of comparisons
performed.

Content developed by Dartford Grammar School Computer Science Department

Best vs Worst vs Average case
• Worst Case

– is the maximum run time, over all inputs of size n, ignoring effects (a)
through (d) above. That is, we only consider the "number of times
the principle activity of that algorithm is performed".

• Best Case
– In this case we look at specific instances of input of size n. For

example, we might get best behaviour from a sorting algorithm if the
input to it is already sorted.

• Average Case
– Arguably, average case is the most useful measure. It might be the

case that worst case behaviour is pathological and extremely rare,
and that we are more concerned about how the algorithm runs in the
general case. Unfortunately this is typically a very difficult thing to
measure.

Content developed by Dartford Grammar School Computer Science Department

The growth rate of t(n)

• Suppose the worst case time for algorithm A is:
t(n) = 60*n*n + 5*n + 1 for input of size n.

• We ignore the coefficient that is applied to the most
significant (dominating) term in t(n).

• Consequently this only affects the "units" in which we
measure. It does not affect how the worst case time grows
with n (input size) but only the units in which we measure
worst case time

• Under these assumptions we can say:
t(n) grows like n*n as n increases or t(n) = O(n*n)

• which reads "t(n) is of the order n squared" or as "t(n) is big-
oh n squared"

Content developed by Dartford Grammar School Computer Science Department

Example (the tyranny of growth)

• In order (from least to most complex)…

– A = (log2 n) {log to base 2 of n}

– B = n {linear in n}

– C = (n * (log2 n)) {n log n}

– D = (n²) {quadratic in n}

– E = (n³) {cubic in n}

– F = (2n) {exponential in n}

– G = (3n) {exponential in n}

– H = (n!) {factorial in n}

Content developed by Dartford Grammar School Computer Science Department

Tabulated below, are a number of
functions against n (from 1 to 10)

Content developed by Dartford Grammar School Computer Science Department

Big O notation summary

Content developed by Dartford Grammar School Computer Science Department

Content developed by Dartford Grammar School Computer Science Department

On a more basic note:

• A single loop that repeats n times takes n time to run

• A nested loop that repeats n times takes n x n times to
run (potentially MUCH longer)

• A loop that checks a condition/flag (usually a WHILE
loop) only loops while it has to – no unnecessary
looping!

• So, want a loop to run faster? Try using a flag-based
(WHILE) loop that will stop once the item you’re
searching for is found. The alternative (FOR loop) would
check EVERYTHING every time it runs.

