

Computer Organisation IB Computer Science

Content developed by **Dartford Grammar School** Computer Science Department

HL Topics 1-7, D1-4

1: System design

2: Computer Organisation

3: Networks

4: Computational thinking

5: Abstract data structures

6: Resource management

7: Control

D: OOP

1: System design

HL & SL 2 Overview

Computer architecture

2.1.1 Outline the architecture of the central processing unit (CPU) and the functions of the arithmetic logic unit (ALU) and the control unit (CU) and the registers within the CPU

2.1.2 Describe primary memory. 2 Distinguish between random access memory (RAM) and readonly memory (ROM), and their use in primary memory

- 2.1.3 Explain the use of cache memory
- 2.1.4 Explain the machine instruction cycle

Secondary memory

- 2.1.5 Identify the need for persistent storage
- Operating systems and application systems
- 2.1.6 Describe the main functions of an operating system
- 2.1.7 Outline the use of a range of application software
- 2.1.8 Identify common features of applications

Binary representation

- 2.1.9 Define the terms: bit, byte, binary, denary/decimal, hexadecimal
- 2.1.10 Outline the way in which data is represented in the computer

Simple logic gates

- 2.1.11 Define the Boolean operators: AND, OR, NOT, NAND, NOR and XOR
- 2.1.12 Construct truth tables using the above operators
- 2.1.13 Construct a logic diagram using AND, OR, NOT, NAND, NOR and XOR gates

5: Abstract data structures

6: Resource management

Topic 2.1.13

Construct a logic diagram using AND, OR, NOT, NAND, NOR & XOR

You could be asked to sketch a diagram using these symbols

The IB uses their **own symbols** for logic gates, not the British Standard ones you'll find on the web.

All exams & mark schemes will only ever contain the ones highlighted in the official pseudo code guidance booklet

Past exam question

Turn the following logic statement into a logic diagram:

Content developed by Dartford Grammar School Computer Science Department

Useful tool: Wolfram Alpha

Wolfram Alpha Boolean Algebra Calculator

Boolean Algebra Calculator	
Enter the statement: [[Use AND, OR, NOT, XOR, NAND, NO Submit	NOT (A AND B) OR C
Logic circuit:	
B Also	does logic diagrams!