
IB Computer Science

Content developed by 
Dartford Grammar School 

Computer Science Department

Abstract Data 
Structures



Content developed by Dartford Grammar School Computer Science Department

1: System design 2: Computer 
Organisation

3: Networks 4: Computational 
thinking

5: Abstract data 
structures

6: Resource 
management

7: Control D: OOP

HL Topics 1-7, D1-4



Content developed by Dartford Grammar School Computer Science Department

1: System design

2: Computer 
Organisation

3: Networks

4: Computational 
thinking

5: Abstract data 
structures

6: Resource 
management

7: Control

D: OOP

HL only 5 Overview
Thinking recursively 

5.1.1 Identify a situation that requires the use of recursive thinking

5.1.2 Identify recursive thinking in a specified problem solution

5.1.3 Trace a recursive algorithm to express a solution to a problem

Abstract data structures 

5.1.4 Describe the characteristics of a two-dimensional array

5.1.5 Construct algorithms using two-dimensional arrays

5.1.6 Describe the characteristics and applications of a stack

5.1.7 Construct algorithms using the access methods of a stack

5.1.8 Describe the characteristics and applications of a queue

5.1.9 Construct algorithms using the access methods of a queue

5.1.10 Explain the use of arrays as static stacks and queues

Linked lists

5.1.11 Describe the features and characteristics of a dynamic data structure

5.1.12 Describe how linked lists operate logically

5.1.13 Sketch linked lists (single, double and circular)

Trees 

5.1.14 Describe how trees operate logically (both binary and non-binary)

5.1.15 Define the terms: parent, left-child, right-child, subtree, root and leaf

5.1.16 State the result of inorder, postorder and preorder tree traversal 

5.1.17 Sketch binary trees

Applications

5.1.18 Define the term dynamic data structure

5.1.19 Compare the use of static and dynamic data structures

5.1.20 Suggest a suitable structure for a given situation



Content developed by Dartford Grammar School Computer Science Department

Topic 5.1.11

Describe how linked lists operate 
logically



Content developed by Dartford Grammar School Computer Science Department

Abstract Data Structures (ADTs)

• 2D array

• Stack

• Queue

• Linked List

• (Binary) Tree

• Recursion



Content developed by Dartford Grammar School Computer Science Department

Linked list

• A linked list is a linear collection of self-referential structures, 
called nodes, connected by pointer links. 

• A linked list is accessed by keeping a pointer to the first node 
of the list. 

• This pointer to the first node of a list is typically named head. 

• Subsequent nodes are accessed via a link pointer member 
that is stored in each node. 



Content developed by Dartford Grammar School Computer Science Department

Linear & Circular Linked Lists



Content developed by Dartford Grammar School Computer Science Department

Inserting into a linked list

Insertion into a linked list has three special cases: 

1. Inserting a new node to the very beginning of the list

2. Inserting a new node at the very end of the list

3. Inserting a new node in the middle of the list and so, 
has a predecessor and successor in the list 



Content developed by Dartford Grammar School Computer Science Department

An empty list

• When list is empty, which is indicated by (head == 
NULL)condition, the insertion is quite simple. 

• Algorithm sets both head and tail to point to the new node.



Content developed by Dartford Grammar School Computer Science Department

Inserting at the BEGINNING 
• In this case, new node is inserted right before the current head node.

• Update the next link of a new node, to point to the current head node. 

• Update head link to point to the new node. 



Content developed by Dartford Grammar School Computer Science Department

Inserting at the END

• In this case, new node is inserted right after the current tail node.

• Update the next link of the current tail node, to point to the new node. 

• Update tail link to point to the new node. 



Content developed by Dartford Grammar School Computer Science Department

Inserting in the MIDDLE
• In general case, new node is always inserted between two existing nodes. 

Head and tail links are not updated in this case. 

• Update link of the "previous" node, to point to the new node. 

• Update link of the new node, to point to the "next" node. 



Content developed by Dartford Grammar School Computer Science Department

Super useful site for algorithms

http://www.algolist.net/Data_structures/Singly-linked_list/Insertion

http://www.algolist.net/Data_structures/Singly-linked_list/Insertion


Content developed by Dartford Grammar School Computer Science Department

Exam question about ADTs 
(Linked Lists, Queue, Stacks)



Content developed by Dartford Grammar School Computer Science Department



Content developed by Dartford Grammar School Computer Science Department

Solution for (a)



Content developed by Dartford Grammar School Computer Science Department

Solution for (b)



Content developed by Dartford Grammar School Computer Science Department

Solution for (c) part 1



Content developed by Dartford Grammar School Computer Science Department

Solution for (c) part 2



Content developed by Dartford Grammar School Computer Science Department

Solution for (d)



Content developed by Dartford Grammar School Computer Science Department

Great presentation about linked lists

http://www.slideshare.net/sshinchan/single-linked-list

http://www.slideshare.net/sshinchan/single-linked-list

