Abstract Data
Structures

IB Computer Science

Content developed by
Dartford Grammar School
Computer Science Department

g I

HL Topics 1-7, D1-4

5: Abstract data
structures

2: Computer
Organisation

6: Resource
management

3: Networks

7: Control

s

4: Computational
thinking

HL On’y 5 OverVieW 2: Computer

Organisation

Thinking recursively
5.1.1 Identify a situation that requires the use of recursive thinking
5.1.2 Identify recursive thinking in a specified problem solution

5.1.3 Trace a recursive algorithm to express a solution to a problem
Abstract data structures

5.1.4 Describe the characteristics of a two-dimensional array 4: Computationa| (‘-
5.1.5 Construct algorithms using two-dimensional arrays A [loF =3
thinking =

5.1.6 Describe the characteristics and applications of a stack
5.1.7 Construct algorithms using the access methods of a stack
5.1.8 Describe the characteristics and applications of a queue

5: Abstract data

5.1.9 Construct algorithms using the access methods of a queue

5.1.10 Explain the use of arrays as static stacks and queues structures
Linked lists

5.1.11 Describe the features and characteristics of a dynamic data structure

5.1.12 Describe how linked lists operate logically 6: Resource

5.1.13 Sketch linked lists (single, double and circular) management

Trees

5.1.14 Describe how trees operate logically (both binary and non-binary)
5.1.15 Define the terms: parent, left-child, right-child, subtree, root and leaf
5.1.16 State the result of inorder, postorder and preorder tree traversal 7: Control
5.1.17 Sketch binary trees TSR

Applications

5.1.18 Define the term dynamic data structure

5.1.19 Compare the use of static and dynamic data structures
5.1.20 Suggest a suitable structure for a given situation

Topic 5.1.11

Describe how linked lists operate
logically

» 15

petobear 15
1991 4|_. May 21
N 1993 j’ April
1957 4|_>

4
Abstract Data Structures (ADTs)
2D array
Stack

Qu e u e MNumbers Characters Logical

Linked List »A
(Binary) Tree A f\ ' '

tyyte shart int long float double char hoolean

Frimitive Data Type

Recursion

Linked list

A linked list is a linear collection of self-referential structures,
called nodes, connected by pointer links.

A linked list is accessed by keeping a pointer to the first node
of the list.

This pointer to the first node of a list is typically named head.

Subsequent nodes are accessed via a link pointer member
that is stored in each node.

3 |Next [=>| 4 |[Next |=>| § |Next [=2>| 6 |[Next|=>null

Linear & Circular Linked Lists

firzt
t | | |
l full-terminated linked list
— — . |— » — -—
finst
t
l circular linked list
— — Py m— — "~ *

b,
Inserting into a linked list

Insertion into a linked list has three special cases:
Inserting a new node to the very beginning of the list
Inserting a new node at the very end of the list

Inserting a new node in the middle of the list and so,
has a predecessor and successor in the list

newhNode newhNode

37 37| &

»12| }>»99) &> »12/ 6| |99 e»

node node.next node node.next

An empty list

When list is empty, which is indicated by (head ==
NULL)condition, the insertion is quite simple.

Algorithm sets both head and tail to point to the new node.

ooln o)

new Mew
nooe node

Inserting at the BEGINNING

In this case, new node is inserted right before the current head node.

new 5
noce

Update the next link of a new node, to point to the current head node.

1]

Update head link to point to the new node.

Inserting at the END

In this case, new node is inserted right after the current tail node.

A 4
nEw
2 u P

tail

Update the next link of the current tail node, to point to the new node.

E
¥ L J
new
| 2 |noce u |

tail

Update tail link to point to the new node.

Inserting in the MIDDLE

In general case, new node is always inserted between two existing nodes.
Head and tail links are not updated in this case.

-1 noc 16

Update link of the "previous" node, to point to the new node.

A5 Bl e

Update link of the new node, to point to the "next" node.

-1 P I-J; r

Super useful site for algorithms

http://www.algolist.net/Data structures/Singly-linked list/Insertion

Data structures
Algorithms
CH+

Books

Forum

Feedback

Support us

to write
more tutorials

to create new
visualizers

to keep sharing

Algorithms and Data Structures

with implementations in Java and C++

Need help with a programming assignment? Get affordable programming homework help.

Algorithms and programming concepts
Sorting algorithms

Bubble sort
Selection sort
Insertion sort

Quicksort

Undirected graph algorithms
® Depth-first search (DFS)
Programming concepts
® Recursion
Number-theoretic algorithms

® Primality test (naive;

= Sieve of Eratosthenes
Miscellaneous

= Binary search algorithm
» Merge algorithm (for sorted arrays)

b—

http://www.algolist.net/Data_structures/Singly-linked_list/Insertion

7,

Exam question about ADTs
(Linked Lists, Queue, Stacks)

In a small airport, the details of all flights due to arrive on a particular day are held in a
collection, FLIGHTS. Each object in the collection contains the following information:

ID: unique flight number

PLACE: where the plane is coming from

DUE: the time it is scheduled to arrive

EXPECTED: the time it is expected to arrive (only if it is early or if it is delayed)
ARRIVED: the time of actual arrival.

EXPECTED and ARRIVED are blank at the beginning of the day and the collection is sorted in
order of DUE.

A screen in the airport can display information on 20 planes at a time, which are held in a
linked list.

7,

(a) Describe the features of a linked list of 20 planes that have the above information. [3]

All times are stored in the collection as the number of minutes since midnight. However they

are displayed on the screen in 24-hour format (for example, 10:58 is stored in the collection
as 658).

(b) Construct an algorithm to convert the times held in the collection into hours and
minutes needed for the 24-hour format displayed on the screen. [3]

If a plane arrived more than 30 minutes ago it is removed from the linked list and the next
one in the collection is added to the end of the list.

(c) With the aid of a diagram, explain how a plane which arrived more than 30 minutes ago
could be removed from the linked list. [4]

(d) For the application described above, compare the use of a linked list with the use of a
queue of objects. [5]

7,

Solution for (a)

(a) Award [1 mark] for data, [1 mark] for pointers, [1 mark] for order.
Example:

Each node would hold the data for one plane (ID, place, time due, time expected,
landed);

Head pointer points to the first in the list;

Each subsequent pointer points to the next in the list and last node has null
pointer;

[3]

Solution for (b)

(b) Award [1 mark] for calculating hours.
Award [1 mark] for calculating minutes.
Award [1 mark] for input and output/return.

Example 1:
input CTIME // time held in the collection in minutes
HOURS = CTIME diwv &0
MINUTES = CTIME med &0
output HOURS, MINUTES // time to be displayed on the screen

Example 2:
input CTIME // time held in the collection in minutes
HOURS = 0
MINUTES = CTIME
WHILE MINUTES=59
MINUTES=MINUTES-&0
HOURS=HOURS+1
ENDWHILE
output HOURS, MINUTES // time to be displayed on the screen

Example 3:
Format24 (CTIME)
// method accepts time held in the collection in minutes
HOURS = CTIME diwv &0
MINUTES = CTIME mod &0
return HOURS + ™:" + MINUTES
// returns time to be displayed on the screen

end Format24 [3]

Solution for (c) part 1

(c) Award marks as follows, up to [4 marks max].
Award [1 mark] for a diagram and explanation showing access to each plane via
pointers;
Award [1 mark] for comparison of current time with time armived;
Award [1 mark] for correct change of pointer from plane deleted;
Award [1 mark] for correct change of pointer to next plane;

Note: The plane to be deleted could be at the beginning of the list OR at the end
of the list OR in the middle of the list; award third and fourth mark (change of
pointers) depending on the position of the node shown in the candidates’
diagramy/explanation.

For example:
PLANES accessed sequentially via pointers;
PLANE.ARRIVED checked against current time;
if = 30 minutes;
if pointer is head pointer;
move head pointer to point to next PLANE;
else if plane is last in list previous pointer points to NULL;
else previous pointer changed to subsequent plane;
pointer of deleted plane null;

Solution for (c) part 2

ID place,
time due,
expected,
arrived

ID place,

time due,
expected,
arrived

Current time - Time arrived =30

ID place,

time due,
expected,
arrived

ID place,

time due,
expected,
arrived

| I

ID place, |N
time due, | U
B : expected, |L
arrived L
ID place,
time due,
expected, :
arrived

[4]

Solution for (d)

(d) Award up to [5 marks maxj.

A queue would hold the elements in order of arrival;
And enqueue correctly to the end as required;

Dequeue would take planes from the top of the screen;
Which is not wanted as they arrive at different times;

Elements in a linked list could be removed from any position in the list;
Hence a linked list is better;

Searching for 1D to amend will be equivalent; [5]

Great presentation about linked lists

If list is empty i.e. P==NULL

* struct node *P=null;

* struct node *q=p;

http://www.slideshare.net/sshinchan/single-linked-list

http://www.slideshare.net/sshinchan/single-linked-list

