Abstract Data
Structures

IB Computer Science

Content developed by
Dartford Grammar School
Computer Science Department

g I

HL Topics 1-7, D1-4

5: Abstract data
structures

2: Computer
Organisation

6: Resource
management

3: Networks

7: Control

s

4: Computational
thinking

HL On’y 5 OverVieW 2: Computer

Organisation

Thinking recursively
5.1.1 Identify a situation that requires the use of recursive thinking
5.1.2 Identify recursive thinking in a specified problem solution

5.1.3 Trace a recursive algorithm to express a solution to a problem
Abstract data structures

5.1.4 Describe the characteristics of a two-dimensional array 4: Computationa| (‘-
5.1.5 Construct algorithms using two-dimensional arrays A [loF =3
thinking =

5.1.6 Describe the characteristics and applications of a stack
5.1.7 Construct algorithms using the access methods of a stack
5.1.8 Describe the characteristics and applications of a queue

5: Abstract data

5.1.9 Construct algorithms using the access methods of a queue

5.1.10 Explain the use of arrays as static stacks and queues structures
Linked lists

5.1.11 Describe the features and characteristics of a dynamic data structure

5.1.12 Describe how linked lists operate logically 6: Resource

5.1.13 Sketch linked lists (single, double and circular) management

Trees

5.1.14 Describe how trees operate logically (both binary and non-binary)
5.1.15 Define the terms: parent, left-child, right-child, subtree, root and leaf
5.1.16 State the result of inorder, postorder and preorder tree traversal 7: Control
5.1.17 Sketch binary trees TSR

Applications

5.1.18 Define the term dynamic data structure

5.1.19 Compare the use of static and dynamic data structures
5.1.20 Suggest a suitable structure for a given situation

Topic 5.1.8

Construct algorithms using the access
methods of a queue

Abstract Data Structures (ADTs)

2D array

Sta C k Frimitive Data Type
Queue
Li n ke d I_i St Mumbers Characters Logical

% Feal Mumbers
[\ Y Y

bywte short int long float double char hioolean

(Binary) Tree

Stacks - all about the ENQUEUE and DEQUEUE

Back Front

Dequeue
Enqueue

First in, First out

FIFO

pO0DOOM

Computer Science
First Exams 2014

Pseudocode in Examinations
+ Standard Data Structures
u u » Examples of Pseudocode

Concte O soweta oy f s cocmer: g e exanasons.

Queues

A queue stores a set of elements in a particular order: Items are retrieved in the o=
are inserted (First-in, First-out). The elements may be of any type (numbers, objects, arrays
Strings, etc.).

Method Brief description Example: Comment
name WAIT, a queue of Strings
enqueue () | Put an item into the | WAIT.enqueue ("Mary") Adds an element that
end of the queue contains the argument,

whether it is a value,
String, object, etc. to
the end of the queue.

dequeue () | Remove an item CLIENT = WAIT.dequeue () | Removes and returns
from front of the the item at the front of
queue the queue.

isEmpty () | Test: queue if WAIT.isEmpty() then | Returns TRUE if the
contains no queue does not
elements contain any elements.

Example 1: Move from array to queue

Write an algorithm that will move all the elements
from a linear integer array LINE to a queue called Q.

int COUNTER = 0
loop COUNTER from 0 to LINE.length

Q.enqueue (LINE [COUNTER])
end loop

Example 2: Print values from a queue

Write an algorithm that will print all the String values
kept in a queue called Q.

loop while not Q.isEmpty ()

output (Q.dequeue())
end loop

Real world examples

Printer queues
Computer modelling of physical queues (like in a

supermarket)
XTTCket Machineij ‘ Ticket Machine B (\T?cket Machine C
O O S
O
®) O o
'® @) o Waiting Lines
O o 5
o - 4
T L s s e -

New Customer O /l; Station Entrance

